Search for Additive Nonlinear Time Series Causal Models
نویسندگان
چکیده
Pointwise consistent, feasible procedures for estimating contemporaneous linear causal structure from time series data have been developed using multiple conditional independence tests, but no such procedures are available for non-linear systems. We describe a feasible procedure for learning a class of non-linear time series structures, which we call additive non-linear time series. We show that for data generated from stationary models of this type, two classes of conditional independence relations among time series variables and their lags can be tested efficiently and consistently using tests based on additive model regression. Combining results of statistical tests for these two classes of conditional independence relations and the temporal structure of time series data, a new consistent model specification procedure is able to extract relatively detailed causal information. We investigate the finite sample behavior of the procedure through simulation, and illustrate the application of this method through analysis of the possible causal connections among four ocean indices. Several variants of the procedure are also discussed.
منابع مشابه
Causal Inference on Time Series using Restricted Structural Equation Models
Causal inference uses observational data to infer the causal structure of the data generating system. We study a class of restricted Structural Equation Models for time series that we call Time Series Models with Independent Noise (TiMINo). These models require independent residual time series, whereas traditional methods like Granger causality exploit the variance of residuals. This work conta...
متن کاملCausal Inference on Time Series using Structural Equation Models
Causal inference uses observations to infer the causal structure of the data generating system. We study a class of functional models that we call Time Series Models with Independent Noise (TiMINo). These models require independent residual time series, whereas traditional methods like Granger causality exploit the variance of residuals. There are two main contributions: (1) Theoretical: By res...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملEvolving Additive Tree Models for System Identification
To some extend, many complicated nonlinear maps are additive models of a number of linear and nonlinear terms. A single linear model or nonlinear model (i.e., a neural network model) has its limitation for approximating this class of maps. In this paper, a hybrid approach to evolve an additive tree model for a given problem is proposed. In this approach, tree-structure based evolution algorithm...
متن کاملDetecting Nonlinear Causality in Multivariate Time Series with Sparse Additive Models
We propose a nonparametric method for detecting nonlinear causal relationship within a set of multidimensional discrete time series, by using sparse additive models (SpAMs). We show that, when the input to the SpAM is a β-mixing time series, the model can be fitted by first approximating each unknown function with a linear combination of a set of B-spline bases, and then solving a group-lasso-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 9 شماره
صفحات -
تاریخ انتشار 2008